SOME NEW TYPES OF PERFECT MAPPINGS

G. S. Ashaea and Y. Y. Yousif

Department of Mathematics, College of Education for Pure Sciences (Ibn -Al-Haitham), University of Baghdad

ghidaasadoon@gmail.com and yoyayousif@yahoo.com

ABSTRACT. In this work, we introduce a new kind of perfect mappings, namely j-perfect mappings and j- ω -perfect mappings. Furthermore we devoted to study the relationship between j-perfect mappings and j- ω -perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied; $j = \theta$, δ , α , pre, b, β .

Keywords: perfect mappings, *j*-perfect mappings, *j*- ω -perfect mappings.

1. INTRODUCTION

In 1966 N. Bourbaki [4] defined perfect mappings and he stated and proved several theorems concerning perfect mappings. Through out this work, (G, τ) and (H, σ) stands for topological spaces. Apoint g in G is said to be condensation point of $K \subseteq G$ if every S in τ with $g \in S$, the set $K \cap S$ is uncountable [8]. In 1982 the ω -closed set was first exhibiting by H. Z. Hdeib in[8], and he know it a sub set $K \subseteq G$ is called ω -closed if it incorporates each its condensation points and the ω -open set is the complement of the ω -closed set. The ω -interior of the set $K \subseteq G$ defined as the union of all ω -open sets content in K and is denoted by int $\omega(K)$. A point $g \in G$ is said to θ -cluster points of $K \subseteq G$ if $cl(S) \cap K \neq \phi$ for each open set S of G containment g. The set of each θ -cluster points of K is called the θ -closure of K and is denoted by $cl\theta(K)$. A subset $K \subseteq G$ is said to be θ closed[20] if $K = cl\theta(K)$. The complement of θ -closed set is said to be θ -open. A point $g \in G$ is said to θ - ω -cluster points of $K \subseteq G$ if $\omega cl(S) \cap K \neq \varphi$ for each ω -open set *S* of *G* containment g. The set of each θ - ω -cluster points of K is called the θ - ω -closure of K and is denoted by $\omega cl\theta$ (K). A subset $K \subseteq G$ is said to be θ - ω -closed [20] if $K = \omega cl\theta(K)$. The complement of θ - ω -closed set is said to be θ - ω -open. δ closed [11] if $K = cl\delta(K) = \{g \in G : int(cl(S)) \cap K \neq \varphi, S \in \tau\}$ and $g \in S$ }. The complement of δ -closed is called δ -open set, δ - ω -closed if $K = cl\delta(K) = \{g \in G : int\omega(cl(S)) \cap K \neq$ $\varphi, S \in \tau$ and $g \in S$ }. The complement of δ - ω -closed is called δ - ω -open. A subset $K \subseteq G$ is said to be α -open [12] if $K \subseteq \text{int}(\text{cl}(\text{int}(K))), \text{ pre-open [11] if } K \subseteq \text{int}(\text{cl}(K)), \text{ b-open }$ [2] if $K \subseteq cl(int(K)) \cup int(cl(K))$, the regular open [17] (resp. regular closed) if int(cl(K)) = K (resp. cl(int(K)) = K, β open [4] if $K \subseteq cl(int(cl(K)))$. A subset $K \subseteq G$ is said to be α - ω -open [13] if $K \subseteq int\omega(cl(int\omega(K)))$, pre- ω -open [13] if $K \subseteq int\omega(cl (K)), b - \omega - open[13] \text{ if } K \subseteq cl(int\omega(K)) \cup$ int ω (cl(*K*), β - ω -open [13] if $K \subseteq$ cl(int ω (cl(*K*))). Several characterizations of ω -closed sets were provided in [1, 3, 10, 19].

Definition 1.1. A mapping $\lambda : (G, \tau) \to (H, \sigma)$ is called continuous [6] (resp., θ -continuous [20], δ -continuous [14], α -continuous [13], *pre*-continuous [11], *b*-continuous [15], β -continuous [4]) if for every an open set *T* in *H*, $\lambda^{-1}(T)$ is an open (resp., θ -open, δ -open, α -open, *pre*-open, *b*-open, β -open) set in *G*.

2. *j*-Perfect Mappings

In this section we defined new types of *j*-perfect mappings and some theorems concerning of them.

Definition 2.1. A mapping $\lambda : G \to H$ is called supra perfect mapping (shortly *j*-perfect mapping), if it is closed, *j*-continuous, and for every $h \in H$, $\lambda^{-l}(h)$ compact, where $j = \theta$, δ , α , *pre*, *b*, β .

Remark 2.2. The relation between *j*-perfect mappings are given by the following figure

 θ -pm $\Rightarrow \delta$ -pm \Rightarrow pm $\Rightarrow \alpha$ -pm $\Rightarrow pre$ -pm $\Rightarrow b$ -pm $\Rightarrow \beta$ -pm Where *j*-pm = *j*-perfect mapping such that $j = \theta$, δ , α pre, b, β . In the higher figure the converses be not a right such that the shown by the following examples:

Example 2.3. Let $\lambda : (G, \tau_G) \to (H, \tau_H)$ be a mapping such that $G = H = \{u, v, w, x\}$, and $\tau_G = \{G, \varphi, \{u\}, \{v, w\}, \{u, v, w\}\}$, with τ_H = discrete topology, such that $\lambda(u) = u, \lambda(v) = v, \lambda(w) = \lambda(x) = w$, let $K = \{v, x\}$. Such that *K* is β -open set and is not *b*-open. Then λ is a β -perfect mapping but it is not *b*-perfect mapping.

Example 2.4. Let $\lambda : (G, \tau_G) \to (H, \tau_H)$ be a mapping such that $G = H = \{u, v, w\}$, and $\tau_G = \{G, \varphi, \{u\}, \{v\}, \{u, v\}\}$, with $\tau_H = \{H, \varphi, \{u\}, \{v\}, \{v, w\}, \{u, v\}\}$, such that $\lambda(u) = \lambda(w) = u$, $\lambda(v) = w$, let $K = \{u, w\}$. Such that *K* is *b*-open set and is not *pre*-open. Then λ is a *b*-perfect mapping but it is not *pre*-perfect mapping.

Example 2.5. Let λ : $(G, \tau_G) \rightarrow (H, \tau_H)$ be a mapping such that $G = H = \{u, v\}$, and

 $\tau_G = \{G, \varphi\}$, with $\tau_H = \{H, \varphi, \{u\}, \{v\}\}$, such that $\lambda(u) = u$, $\lambda(v) = v$, let $K = \{u\}$. Such that *K* is *pre*-open set and is not α -open. Then λ is *pre*-perfect mapping but it is not α -perfect mapping.

Example 2.6. Let $\lambda : (G, \tau_G) \to (H, \tau_H)$ be a mapping such that $G = H = \{u, v, w\}$, and $\tau_G = \{G, \phi \{u\}\}$, and $\tau_H = \{H, \phi \{v\}\}$, such that $\lambda (u) = \lambda (v) = u, \lambda (w) = w$, let $K = \{u, v\}$. Such that *K* is α -open set and is not open Then λ is α -perfect mapping but it is not perfect mapping.

Example 2.7. Let $\lambda : (G, \tau) \to (H, \sigma)$ be a mapping such that $G = \{a, b, c\}, H = \{1, 2\}, \tau = \{G, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, \sigma = \{H, \varphi, \{1\}\}$, such that $\lambda(a) = \lambda(c) = 2, \lambda(b) = 1$, let $K = \{b\}$. Such that K is open set and is not δ -open. Then λ is perfect mapping but it is not δ -perfect mapping

Example 2.8. Let $\lambda : (G, \tau) \to (G, \tau)$ be a mapping such that $G = \{a, b, c\} \tau = \{G, \varphi, \{a\}, \{b\}, \{a, b\}\}$, such that $\lambda(a) = c, \lambda(b) = a, \lambda(c) = b$, let $K = \{b\}$. Such that *K* is δ -open set and is not θ -open. Then λ is δ -perfect mapping but λ is not θ -perfect mapping

Theorem 2.9. Let (G, τ) be a regular space, The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ be a

is δ -perfect if and only if it is θ -perfect.

Proof: Let λ be a δ -perfect mapping. It suffices to demonstrated that λ is θ -continuous, let $g \in G$ and let T be an open set containment $\lambda(g)$ in H. And because of λ is δ -continuous, there is an open set S containment g such that $\lambda(S) \subseteq int(cl(T))$. Because of $int(cl(T)) \subseteq cl(T)$, then $\lambda(S) \subseteq int(cl(T)) \subseteq cl(T)$, then $\lambda(S) \subseteq cl(T)$, Since the space G is regular space, there is an open set S1 in G such that $g \in S1$ and $cl(S1) \subseteq S$, so $\lambda(cl(S1)) \subseteq \lambda(S)$, It ensue thereupon $\lambda(cl(S1)) \subseteq cl(T)$. So λ is θ -continuous. Hence λ is θ -perfect mapping.

Definition 2.10. A topological space is called a semi-regular [18] if for each point g of the space and each open set S containment g, there is an open set T such that $g \in T \subseteq int(cl(T)) \subseteq S$.

Theorem 2.11. Let (G, τ) and (H, σ) be a semi-regular spaces. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is perfect if and only if it is δ -perfect.

Proof: Let λ be a perfect mapping. It suffices to demonstrated that λ is δ -continuous, let $g \in G$ and let T be an open set containment λ (g) in H. Because of λ is continuous, there is an open set S containment g, such that λ (S) $\subseteq T$. Because the space G is semi-regular space, there is an open set S1 in G such that $g \in S1$ and $T \subseteq int(cl(T)) \subseteq S1$, and H is semi-regular space, there is an open set T1 such that λ (g) $\in T1$ and $S \subseteq int(cl(S)) \subseteq T1$, then it follows that λ (int(cl(S))) \subseteq int(cl(T)). So λ is δ -continuous. Hence λ is δ -perfect mapping.

Theorem 2.12. Let (G, τ) be a regular space. The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ is perfect if and only if it is θ -perfect.

Proof: Let λ be a perfect mapping. It suffices to demonstrated that λ is θ -continuous, let $g \in G$ and let T be an open set containment λ (g) in H. Since λ is continuous, there is an open set S containment g, such that λ (S) $\subseteq T$. Because of $T \subseteq cl(T)$, and G is regular space, there is an open set S1 in G such that $g \in S1$, and $cl(S1) \subseteq S$, so λ (cl(S1)) $\subseteq \lambda$ (S), then λ (cl(S1)) $\subseteq \lambda$ (S), then λ (cl(S1)) $\subseteq \lambda$ is θ -continuous. Hence consider λ is θ -perfect mapping.

Definition 2.13. let G be a space and $K \subseteq G$ is called :

1. t-set [16], if int(K) = int cl(K).

2. *B*-set [16], if $K = S \cap T$; where S is an open set and T is an t-set.

3. $t\alpha$ -set if int(K) = int(cl(int(K))).

4. $B\alpha$ -set if $K = S \cap T$; where S is an open set and T is an t α -set.

Definition 2.14. The space (G, τ) is called *B*-condition (resp., $B\alpha$ -condition) if every *pre*-open (resp., α - open) set is *B*-set (resp., $B\alpha$ -set).

Example 2.15. let $G = \{a, b, c\}$ $\tau = \{G, \phi, \{a\}, \{a, b\}\}$ and $K \subseteq G$ such that $K = \{a, b\}$ is *pre*-open set, the space (*G*, τ) is *B*-condition.

Example 2.16. let $G = \{a, b, c\} \tau = \{G, \varphi, \{a\}\}$ and $K \subseteq G$ such that $K = \{a\}$ is α -open set, the space (G, τ) is $B\alpha$ -condition.

Theorem 2.17. Let the space (G, τ) be $B\alpha$ -condition. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is α -perfect if and only if it is perfect.

Proof: Let λ be a α -perfect mapping to prove it is perfect. It suffices to demonstrated that λ continuous, let $g \in G$ and let

T be an open set containment λ (g) in *H*. Because λ is α continuous, there is an open set *S* containment g, such that $\lambda(S) \subseteq \text{int}(\text{cl}(\text{int}(T1)))$. Because of the space *G* have $B\alpha$ condition, there is a subset *T*1 α -open set in *H* such that $\lambda(g) \in T1$ is $B\alpha$ -set then $\text{int}(\text{cl}(\text{int}(T1))) \subseteq \text{int}(T1)$, also $\text{int}(T1) \subseteq$ *T1*. It follows that $\lambda(S) \subseteq T$, then λ is continuous. Hence consider λ is perfect mapping.

Definition 2.18. [7] The space (G, τ) is called a door space if each subset of G is open or closed.

Theorem 2.19. Let (G, τ) be a door spaces. The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ is *b*-perfect if and only if it is *pre*-perfect. **Proof:** Assume that λ be a *b*-perfect mapping. It suffices to demonstrated that λ is *pre*-continuous, let $g \in G$ and let *T* be an open set containment λ (g) in *H*. λ is *b*-continuous there is an open set *S* containment g, such that $\lambda(S) \subseteq int(cl(T1)) \cup$ cl(int (*T*1)). Because *G* is a door space, there is a subset *T*1 an open in *H*, such that λ (g) \in *T*1 and *T*1 \subseteq int(cl(*T*1)) \cup cl(int (*T*1)), then $\lambda(S) \subseteq T1$ also *T*1 \subseteq int(cl(*T*1)) Then $\lambda(S) \subseteq$ int(cl(*T*1)). So λ is *pre*-continuous. Hence consider λ is *pre*perfect mapping.

Theorem 2.20. Let (G, τ) be a door space. The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ is

(a) pre-perfect mapping if and only if it is perfect mapping.

(b) β -perfect mapping if and only if it is *b*-perfect mapping.

Proof: (a) suppose that λ be a *pre*-perfect mapping. It suffices to demonstrated that λ continuous, let $g \in G$ and let *T* be an open set containment $\lambda(g)$ in *H*. because of λ is *pre*-continuous there is an open set *S* containment *g*, such that $\lambda(S) \subseteq int(cl(T1))$, and *G* is a door space, there is a subset *T*1 an open in *H*, such that $\lambda(g) \in T1$, and $int(cl(T1)) \subseteq T$. Then $\lambda(S) \subseteq int(cl(T1)) \subseteq T$. It follows that $\lambda(S) \subseteq T$. So λ is continuous. Hence consider λ is perfect mapping.

The same way to show (b).

Theorem 2.21. Let (G, τ) be $B\alpha$ -condition. The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ is *pre*-perfect if and only if it is α -perfect.

Proof: Let $\lambda : (G, \tau) \to (H, \sigma)$ be *pre*-perfect mapping, to prove it is α -perfect to demonstrated that λ is α -continuous, let $g \in G$ and let *T* be an open set containment $\lambda(g)$ in *H*, such that $\lambda(g) \in T$. Because of λ is *pre*-continuous, there is an open set *S* such that $\lambda(S) \subseteq int(cl(T), and int(cl(T) \subseteq T$ then $\lambda(S) \subseteq T$, and *G* is $B\alpha$ -condition there is α -open *T*1 such that $T1 \subseteq int(cl(int(T1)))$, then $\lambda(S) \subseteq int(cl(int(T1)))$. So consider λ is α -perfect mapping.

Theorem 2.22. Let (G, τ) be *B*-condition. The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ is perfect if and only if it is *pre*-perfect. **Proof:** (\Rightarrow) it is obvious

(\Leftarrow) Let λ be a *pre*-perfect mapping to demonstrated it is perfect mapping. It suffices to prove that λ continuous, let g \in G and let T be an open set containment λ (g) in H. Because of λ is *pre*-continuous, there is an open set S containment g, such that λ (S) \subseteq int(cl(T1)), and G is Bcondition there is a subset T1 *pre*-open set in H, such that λ (g) \in T1, then int(cl(T1)) \subseteq int(T1) and int(T1) \subseteq T1. Then int(cl(T1)) \subseteq T1. It follows that λ (S) \subseteq T1, so λ is continuous. Hence consider λ is perfect mapping. **Definition 2.23.** Let $\lambda : (G, \tau) \to (H, \sigma)$ be a mapping such that is called B-continuous [16] (resp., B α -continuous [16]), if for each an open *T* in *H*, $\lambda^{-l}(T)$ is an B-set (resp. B α -set) in *G*.

Definition 2.24. Let $\lambda : (G, \tau) \to (H, \sigma)$ be a mapping such that is called B-perfect (resp., B α -perfect) if it is closed, B-continuous(resp., B α -continuous), and for every $h \in H$ such that $\lambda^{-1}(h)$ compact.

Theorem 2.25. For a mapping $\lambda : (G, \tau) \to (H, \sigma)$ the following properties are equipotent :

(a) λ is perfect

(b) λ is *pre*-perfect and **B**-perfect.

(c) λ is α -perfect and B α -perfect.

3. Supra ω-Perfect mappings

In this section we defined some new types of j- ω -perfect mappings and we show the relation between them.

Definition 3.1. A mapping $\lambda : (G, \tau) \to (H, \sigma)$ is called [7] ω -continuous (resp., *j*- ω -continuous) if for every $g \in G$ and every open set *T* of *H* containing $\lambda(g)$ there exists *S* an ω -open (resp., *j*- ω -open)set in *H*, where $j = \theta, \delta, \alpha, pre, b, \beta$.

Definition 3.2. A mapping $\lambda : G \to H$ is called ω -perfect, if it is closed, ω -continuous, and for every $h \in H$, $\lambda^{-l}(h)$ compact.

Definition 3.3. A mapping $\lambda : G \to H$ is called supra ω perfect mappings (shortly *j*- ω -perfect mappings) if it is closed, *j*- ω -continuous, and for every $h \in H$, $\lambda^{-1}(h)$ compact, where $j = \theta$, δ , α , pre, b, β .

Remark 3.4. The relation between ω -perfect mappings, *j*-perfect mappings and *j*- ω -perfect mappings are given by the following figure.

$$\begin{array}{ccc} \theta\text{-pm} & \Rightarrow \theta\text{-}\omega\text{-pm} \\ \downarrow & \downarrow \\ \delta\text{-pm} \Rightarrow \delta\text{-}\omega\text{-pm} \\ \downarrow & \downarrow \\ pm \Rightarrow \omega\text{-pm} \\ \downarrow & \downarrow \\ a\text{-pm} \Rightarrow \alpha\text{-}\omega\text{-pm} \\ \downarrow & \downarrow \\ pre\text{-pm} \Rightarrow pre\text{-}\omega\text{-pm} \\ \downarrow & \downarrow \\ b\text{-pm} \Rightarrow b\text{-}\omega\text{-pm} \\ \downarrow & \downarrow \\ \beta\text{-pm} \Rightarrow \beta\text{-}\omega\text{-pm} \end{array}$$

Where *j*-pm = *j*-perfect mapping, and *j*- ω -pm = *j*- ω -perfect mapping, such that $j = \theta$, δ , α , pre, b, β .

In the higher figure the converses be not a right such that the shown by the following examples:-

Example 3.5. Let $\lambda : (G, \tau_G) \to (H, \tau_H)$ be a mapping such that $G = H = \{ u, v, w, x \}$, and $\tau_G = \{G, \varphi, \{u\}, \{v, w\}, \{u, v, w, w\}\}$,with τ_H = discrete topology, such that $\lambda (u) = u, \lambda (v) = v, \lambda (w) = \lambda (x) = w$, let $K = \{v, x\}$. Such that *K* is β - ω -open set and is not *b*- ω -open. Then λ is a β - ω -perfect mapping but it is not *b*- ω -perfect mapping.

Example 3.6. Let $\lambda : (G, \tau_G) \rightarrow (H, \tau_H)$ be a mapping such that $G = H = \{u, v, w\}$, and $\tau_G = \{G, \varphi, \{u\}, \{v\}, \{u, v\}\}$, with $\tau_H = \{H, \varphi, \{u\}, \{v\}, \{v, w\} \{u, v\}\}$, such that $\lambda(u) = \lambda(w) = u$, $\lambda(v) = w$, let $K = \{u, w\}$. Such that *K* is *b*-

 ω -open set and is not *pre-* ω -open. Then λ is a *b-* ω -perfect mapping but it is not *pre-* ω -perfect mapping.

Example 3.7. Let $\lambda : (G, \tau_G) \to (H, \tau_H)$ be a mapping such that $G = H = \{u, v\}$, and $\tau_G = \{G, \varphi\}$, with $\tau_H = \{H, \varphi, \{u\}\}$, $\{v\}\}$, such that $\lambda(u) = u$, $\lambda(v) = v$, let $K = \{u\}$. Such that *K* is *pre-* ω -open set and is not α - ω -open. Then λ is *pre-* ω -perfect mapping but it is not α - ω -perfect mapping.

Example 3.8. Let $\lambda : (G, \tau_G) \to (H, \tau_H)$ be a mapping such that $G = H = \{u, v, w\}$, and $\tau_G = \{G, \varphi, \{u\}\}$, and $\tau_H = \{H, \varphi, \psi\}$, such that $\lambda(u) = \lambda(v) = u, \lambda(w) = w$, let $K = \{u, v\}$. Such that *K* is α - ω -open set and is not ω -open. Then λ is α - ω -perfect mapping but it is not ω -perfect mapping.

Example 3.9.Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping such that $G = \{a, b, c\}, H = \{1, 2\}, \text{and } \tau = \{G, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, \sigma = \{H, \varphi, \{1\}\}, \text{ such that } \lambda(a) = \lambda(c) = 2, \lambda(b) = 1, \text{ let } K = \{b\}.$ Such that *K* is ω -open set and is not δ - ω -open. Then λ is ω -perfect mapping but it is not δ - ω -perfect mapping

Example 3.10. Let $\lambda : (G, \tau) \to (G, \tau)$ be a mapping such that $G = \{a, b, c\}$ and $\tau = \{G, \varphi, \{a\}, \{b\}, \{a, b\}\}$, such that $\lambda (a) = c, \lambda (b) = a, \lambda (c) = b$, let $K = \{b\}$. Such that K is δ - ω -perfect and is not θ - ω -perfect mapping but it is not θ - ω -perfect mapping.

Definition 3.11. A topological space *G* is called ω -regular [5] if for every ω -closd set F and every point $g \in G - F$, there exists disjoint ω -open sets *S* and *T* such that $g \in S$ and $F \subseteq T$.

Theorem 3.12. Let (G, τ) be an ω -regular space. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is δ - ω -perfect mapping if and only if it is θ - ω -perfect mapping.

Proof: Let λ be a δ - ω -perfect mapping. It suffices to demonstrated that λ is θ - ω -continuous, let $g \in G$ and let T be an ω -open set containment λ (g) in H. Because of λ is δ - ω -continuous, there is an open set S containment g, such that λ (S) \subseteq int ω (cl(T)). Because int ω (cl(T)) \subseteq cl(T), then λ (S) \subseteq int ω (cl(T)) \subseteq cl(T), then λ (S) \subseteq cl(T), and G is ω -regular space, there is an ω -open set S1 in G, such that $g \in$ S1 and cl(S1) \subseteq S, so λ (cl(S1)) $\subseteq \lambda$ (S), It follows that λ (cl(S1)) \subseteq cl(T). So λ is θ - ω -continuous. Hence consider λ is θ - ω -perfect mapping.

Definition 3.13. A topological space is called a semi- ω -regular, if for every point g of the space and every ω -open set *S* containment g, there is an ω -open set *T* such that $g \in T \subseteq int\omega(cl(T)) \subseteq S$.

Example 3.14. let $\lambda : (G, \tau) \to (G, \tau)$ be amapping, $G = \{K, L, M, N\}$ and $\tau = \{G, \varphi, \{K\}, \{L\}, \{K, L\}, \{K, L, N\}\}$, such that $\lambda (K) = \lambda (L) = \lambda (M) = \lambda (N) = K$, and $\{K, L, M\}$ an ω -open but not open, then the space is semi-regular but not semi- ω -regular.

Theorem 3.15. Let (G, τ) and (H, σ) be a semi- ω -regular spaces. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is ω -perfect mapping if and only if it is δ - ω -perfect mapping

Proof: Let λ be an ω -perfect mapping. It suffices to demonstrated that λ is δ - ω -continuous, let $g \in G$ and let T be an ω -open set containment λ (g) in H. Because of λ is ω -continuous, there is an open set S containment g, such that λ (S) $\subseteq T$. Because of G is a semi- ω -regular space, there is an

ω-open set S1 in *G* such that g ∈ S1 and T ⊆ intω(cl(T)) ⊆ S1, and *H* is a semi-ω-regular space such that λ(intω(cl(S1))) ⊆ T. Then λ(intω(cl(S1))) ⊆ intω(cl(T)). Hence λ is δ-ω-continuous. So consider λ is δ-ω-perfect mapping.

Theorem 3.16. Let (G, τ) be an ω -regular space. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is ω -perfect mapping if and only if it is θ - ω -perfect mapping.

Proof: Let λ be an ω -perfect mapping. It suffices to demonstrated that λ is θ - ω -continuous, let $g \in G$ and let T be an ω -open set containment $\lambda(g)$ in H. Because of λ is ω -continuous, there is an open set S containment g, such that $\lambda(S) \subseteq T$. Because of $T \subseteq cl(T)$, and G is ω -regular space, there is an ω -open set S1 in G such that $g \in S1$ and $cl(S1) \subseteq S$, so $\lambda(cl(S1)) \subseteq \lambda(S)$, then $\lambda(cl(S1)) \subseteq \lambda(S) \subseteq cl(T)$. It follows that $\lambda(cl(S1)) \subseteq cl(T)$. Then λ is θ - ω -continuous. Hence λ is θ - ω -perfect mapping.

Definition 3.17. [13] let *G* be a space and $K \subseteq G$ is called

(a) An ω -set if $K = S \cap T$; where S is an open set and $int(T) = int\omega(T)$

(b) An ω -*t*-set, if $int(K) = int\omega(cl(K))$.

(c) An ω -*B*-set if $K = S \cap T$; where *S* is an open set and *T* is an ω -*t*-set.

(d) An ω -t α -set, if int(K) = int ω (cl(int ω (K)).

(e) An ω -*Ba*-set if $K = S \cap T$; where *S* is an open set and *T* is an ω -*ta*-set.

Definition 3.18. [9] Let (G, τ) be topological space ,we called G is ω -condition (resp., ω -B-condition, ω -Ba-condition) if every ω -open (resp. *pre*- ω -open, α - ω -open) set is ω -set (resp., B- ω -set, ω -Ba- set).

Theorem 3.19. Let a space (G, τ) be an ω -*Ba*-condition. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is *a*- ω -perfect if and only if it is ω -Perfect.

Proof: Let $\lambda : (G, \tau) \to (H, \sigma)$ be α - ω -perfect mapping, to prove it is ω -perfect to demonstrated that λ is ω -continuous, let $g \in G$ and let *T* be an ω -open set containment $\lambda(g)$ in *H*, such that $\lambda(g) \in T1$ and int $\omega(cl(int\omega(T1)) \subseteq T)$, because λ is α - ω -continuous,

, there is an ω -open set *S* containment g, such that $\lambda(S) \subseteq \operatorname{int}\omega$ (cl(int ω (*T*1))). Because of the space *G* have ω -*B* α -condition, there is a subset *T*1 α - ω -open set in *H* such that $\lambda(g) \in T1$ is $B\alpha$ - ω -set then int ω (cl(int ω (*T*1))) \subseteq int ω (*T*1), also int ω (*T*1) \subseteq *T*1. It follows that $\lambda(S) \subseteq T$, then λ is ω -continuous. Hence consider λ is ω -perfect mapping.

Lemma 3.20. [7] If a space (G, τ) is a door space then every *pre-\omega*-open is ω -open.

Theorem 3.21. Let (G, τ) be a door space. The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ is

(a) *pre-* ω -perfect if and only if it is ω -perfect.

(b) β - ω -perfect if and only if it is *b*- ω -perfect.

Proof: (a) prove by lemma 3.20

the same way to show (b)

Theorem 3.22. Let a space (G, τ) be an ω -B α -condition. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is *pre-* ω -perfectif and only if it is α - ω -Perfect.

Proof: Let $\lambda : (G, \tau) \to (H, \sigma)$ be *pre-* ω -perfect mapping, to prove it is α - ω -perfect to demonstrated that λ is α - ω -continuous, let $g \in G$ and let *T* be an ω -open set containment

 λ (g) in *H*, such that λ (g) \in *T*1, and int ω (cl (*T*1)) \subseteq *T*, because of λ is *pre-\omega*-continuous, there is an ω -open set *S* containment g, and *G* is ω -*Ba*-condition, then $\lambda(S) \subseteq$ int ω (cl(int ω (*T*1)). It follows that $\lambda(S) \subseteq$ *T*1, so λ is *a*- ω -perfect mapping.

Theorem 3.23. Let (G, τ) be a door space. The mapping λ : $(G, \tau) \rightarrow (H, \sigma)$ is *b*- ω -perfect if and only if it is *pre*- ω -perfect.

Proof: suppose that λ be a *b*- ω -perfect mapping. It suffices to demonstrated that λ is *pre*- ω -continuous, let $g \in G$ and let *T* be an open set containment $\lambda(g)$ in *H*. Because *G* is a door space, there is a subset *T*1 an ω -open in *H*, such that $\lambda(g) \in T1$, and int $\omega(cl(T1)) \cup cl(int\omega(T1)) \subseteq T$. Because of λ is *b*- ω -continuous, there is an open set *S* containment *g*, such that $\lambda(S) \subseteq int\omega(cl(T1)) \cup cl(int\omega(T1))$. And int $\omega(cl(T1)) \subseteq T$. It follows that $\lambda(S) \subseteq int\omega(cl(T1))$, so λ is *pre*- ω -continuous. Hence consider λ is *pre*- ω -perfect mapping.

Theorem 3.24. Let (G, τ) be an ω -condition then. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is ω -perfect if and only if it is perfect.

Proof: Let λ be a ω -perfect mapping to prove it is perfect mapping. It suffices to demonstrated that λ continuous, let g $\in G$ and let *T* be an open set containment λ (g) in *H*. Because *G* satisfy ω -condition, yond is an ω -open *T*1 in *H*, such that λ (g) \in *T*1, because of λ is ω -continuous, there is an ω -open set *S* containment *x* with λ (*S*) \subseteq *T*, so λ is continuous. Hence λ is perfect mapping.

Remark 3.25. Theorem 3.24. is not true in general. It mean if $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is

 ω -perfect mapping, then it is not necessarily perfect mapping there shown in the next example.

Example 3.26. Let $G = \{1, 2, 3\}, \tau = \{G, \varphi, \{3\}\}, H = \{4, 5, 6\}, \sigma = \{H, \varphi, \{5, 6\}\}$ and let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping and know by $\lambda (1) = \lambda (2) = 4$, $\lambda (3) = 5$ since G and H are countable then any subset of G and H are ω -open let S= G are ω -continuous but not continuous since $\lambda(G) = \{4, 5\} \not\subset \{5, 6\}$ that λ is ω -perfect mapping but not perfect mapping

Theorem 3.27. Let a space (G, τ) be an ω -*B*-condition. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is *pre*- ω -perfect if and only if it is ω -perfect.

Proof: Let λ be a *pre-w*-perfect mapping to prove it is ω perfect mapping. It suffices to demonstrated that $\lambda \quad \omega$ continuous, let $g \in G$ and let *T* be an open set containment λ (g) in *H*. , because λ is *pre-w*-continuous, there is an ω -open set *S* containment g, such that λ (*S*) \subseteq int ω (cl(*T*1)). Because *G* satisfy ω -*B*-condition, there is a subset *T*1 *pre*-open also is open in *H*; $\lambda(g) \in T1$ and int ω (cl(*T*1)) \subseteq int ω (*T*1) and int ω (*T*1) \subseteq *T*1. It follows that λ (*S*) \subseteq *T*1, so λ is ω continuous. Hence λ is ω -perfect mapping.

Theorem 3.28. Let (G, τ) be a door topological space. The mapping $\lambda: (G, \tau) \to (H, \sigma)$ is.

(a) *pre-* ω -perfect if and only if it is ω -perfect.

(b) β - ω -perfect if and only if it is *b*- ω -perfect.

Proof: Let λ be a *pre-\omega*-perfect mapping to prove it is ω perfect to demonstrated that λ is ω -continuous, let $g \in G$

and let *T* be an ω -open set containment $\lambda(g)$ in *H*, and *G* is a door space, there is a subset *T*1 an ω -open in *H*, such that $\lambda(g) \in T1$ and $\operatorname{int}\omega(\operatorname{cl}(T1)) \subseteq T$, since λ is *pre*- ω -continuous, there is an ω -open set *S* containment g, such that $\lambda(S) \subseteq$ $\operatorname{int}\omega(\operatorname{cl}(T1))$. It follows that $\lambda(S) \subseteq T$, so λ is continuous. Hence consider λ is ω -perfect mapping

Similarly we can prove (b).

Definition 3.29. Let λ be a mapping $\lambda : (G, \tau) \to (H, \sigma)$ is called ω -B-continuous (resp., ω - B α -continuous [7]). If for each an open T in H, $\lambda^{-1}(T)$ is an ω -B-set (resp., ω - B α -set) in G.

Definition 3.30. Let λ be a mapping $\lambda : (G, \tau) \to (H, \sigma)$ is called ω -B-perfect mapping (resp., ω -B α -perfect mapping) if it is closed, ω -B-continuous (resp., ω -B α -continuous), and for every $h \in H$, $\lambda^{-1}(h)$ compact.

Theorem 3.31. Let λ be a mapping $\lambda : (G, \tau) \to (H, \sigma)$, the mapping of following properties are equipotent :

(a) λ is ω -perfect.

- (b) λ is *pre-* ω -perfect and ω -B-perfect.
- (c) λ is α - ω -perfect a nd ω -B α -perfect.

REFERENCES

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, " β -open sets and β –continuous mappings", Bull. Fac. Sci. Assuit Univ. 12: 77-90 (1983).
- [2] D. Andrijevi´c, "On b-open sets", Mat. Vesnik 48: 59-64 (1996).
- [3] A. Al-Omari, T. Noiria and M. Salmi Md. Nooriani " Weak and Strong Forms ofω-Continuous Functions" Volume 2009, Article ID 174042,12pagesdoi:10.1155/2009/174042
- [4] N. Bourbaki, General Topology, Part I, Addison-Wesly, Reding, Mass, (1966).
- [5] N. Bourbaki, "Regular Space." in Elements of Mathematics: General Topology. Berlin: Springer-Verlag, pp. 80-81, 1989.

- [6] R.Devi, K. Balachan dran and H. Maki, on Generalized α-continuous maps, Far.East J. Math., 16(1995), 35-48.
- [7] H. Z. Hdeib, "ω-continuous functions", Dirasat 16, (2): 136-142 (1989)
- [8] H. Z. Hdeib, "ω -closed mappings", Rev. Colomb. Mat. 16 (3-4): 65-78 (1982).
- [9] Luay A. AI-Swidi and Mustafa. H. Hadi " Characterizations of Continuity and Compactness with Respect to Weak Forms of ω -Open Sets" 1450-216X Vol.57 No.4 (2011), pp.577-582.
- [10] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, αcontinuous and α-open mappings, Acta Math. Hungar., 41 (1983), 213–218.
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, "On precontinuous and weak precontinuous functions", Proc. Math. Phys. Soc. Egypt 51: 47-53 (1982).
- [12] O. Njåstad, "On some classes of nearly open sets", Pacific J. Math. 15: 961-970(1965).
- [13] T. Noiri, A. Al-Omari, M. S. M. Noorani", Weak forms of ω -open sets and decomposition of continuity ", E.J.P.A.M.2(1): 73-84 (2009).
- [14] T. Noiri, (1980). On δ -continuous functions. J. Korean Math. Soc., 16, 161-166.
- [15] J. H. Park, "Strongly θ-b continuous functions" Acta Math. Hungar. 110(4)(2006),7-35.
- [16] I. L. Reilly and M. K. Vamanamurthy, On α-continuity in topological spaces, Acta Math. Hungar., 45 (1985), 27– 32.
- [17] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.
- [18] M. Stone, H. (1977). Applications of the theory boolean rings to General toplogy.Trans. Am. Math, Soc., 41,375-481.
- [19] J. Tong, A decomposition of continuity, Acta Math. Hungar., 48 (1986), 11–15. [20] N. N. Velicko, "Hclosed topological spaces,"American Mathematical Society Translations, vol. 78, no.2, pp. 103–118, 1968.